Temperature dependence of the band gap of semiconducting carbon nanotubes.

نویسندگان

  • Rodrigo B Capaz
  • Catalin D Spataru
  • Paul Tangney
  • Marvin L Cohen
  • Steven G Louie
چکیده

The temperature dependence of the band gap of semiconducting single-wall carbon nanotubes (SWNTs) is calculated by direct evaluation of electron-phonon couplings within a "frozen-phonon" scheme. An interesting diameter and chirality dependence of E(g)(T) is obtained, including nonmonotonic behavior for certain tubes and distinct "family" behavior. These results are traced to a strong and complex coupling between band-edge states and the lowest-energy optical phonon modes in SWNTs. The E(g)(T) curves are modeled by an analytic function with diameter- and chirality-dependent parameters; these provide a valuable guide for systematic estimates of E(g)(T) for any given SWNT. The magnitudes of the temperature shifts at 300 K are smaller than 12 meV and should not affect (n,m) assignments based on optical measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic and extrinsic effects in the temperature-dependent photoluminescence of semiconducting carbon nanotubes.

The temperature dependence of the band gap of semiconducting carbon nanotubes was measured for ten different nanotube species. The unprecedented effectiveness in avoiding the effect of external strain, or any other effects originating from the surrounding environment, lead to an accurate measurement of the band gap temperature dependence, giving fundamental insight into the nanotube electron-ph...

متن کامل

Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes.

The optical transitions of semiconducting carbon nanotubes have been ascribed to excitons. Here we use two-photon excitation spectroscopy to measure exciton binding energies, as well as band-gap energies, in a range of individual species of semiconducting SWNTs. Exciton binding energies are large and vary inversely with nanotube diameter, as predicted by theory. Band-gap energies are significan...

متن کامل

Diameter dependence of thermoelectric power of semiconducting carbon nanotubes

dependence of thermoelectric power of semiconducting carbon nanotubes. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We calculate the thermoelectric power (or th...

متن کامل

Reentrant semiconducting behavior of zigzag carbon nanotubes at substitutional doping by oxygen dimers.

The electronic structures of carbon nanotubes doped with oxygen dimers are studied using the ab initio pseudopotential density functional method. The fundamental energy gap of zigzag semiconducting nanotubes exhibits a strong dependence on both the concentration and configuration of oxygen-dimer defects that substitute for carbon atoms in the tubes and on the tube chiral index. For a certain ty...

متن کامل

Temperature dependence of the optical excitation lifetime and band gap in chirality assigned semiconducting single-wall carbon nanotubes

The temperature dependence of optical excitation lifetime 1/ and transition energies Eii were measured for bucky papers of single-wall carbon nanotubes SWCNTs and inner tubes in double-wall carbon nanotubes DWCNTs using resonant Raman scattering on the radial breathing mode. The temperature dependence of and Eii is the same for both types of samples and is independent of tube chirality. The dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 2005